Зрительный анализатор человека

Полезный материал на тему: "Зрительный анализатор человека" с полным описанием от профессионалов понятным для людей языком.

Зрительный анализатор

Урок биологии в 8-м классе

Оборудование: разборная модель глаза, таблица «Зрительный анализатор», объемные предметы, репродукции картин. Раздаточный материал на парты: рисунки «Строение глаза», карточки для закрепления по данной теме.

Ход урока

I. Организационный момент

II. Проверка знаний учащихся

1. Термины (на доске): органы чувств; анализатор; строение анализатора; виды анализаторов; рецепторы; нервные пути; мозговой центр; модальность; зоны коры большого мозга; галлюцинации; иллюзии.

2. Дополнительная информация по домашнему заданию (сообщения учащихся):

– впервые термин «анализатор» мы встречаем в работах И.М. Сеченова;
– на 1 см кожи от 250 до 400 чувствительных окончаний, на поверхности тела их до 8 млн;
– на внутренних органах располагается около 1 млрд рецепторов;
– И.М. Сеченов и И.П. Павлов считали, что деятельность анализатора сводится к анализу воздействий на организм внешней и внутренней среды.

III. изучение нового материала

(Сообщение темы урока, цели, задачи и мотивации учебной деятельности учащихся.)

1. Значение зрения

Каково значение зрения? Давайте вместе ответим на этот вопрос.

Да, действительно, орган зрения является одним из важнейших органов чувств. Окружающий нас мир мы воспринимаем и познаем прежде всего с помощью зрения. Так мы получаем представление о форме, размерах предмета, его окраске, вовремя замечаем опасность, любуемся красотой природы.

Благодаря зрению перед нами открываются голубое небо, молодая весенняя листва, яркие краски цветов и порхающие над ними бабочки, золотая нива полей. Чудесны осенние краски. Мы можем долго любоваться звездным небом. Окружающий нас мир прекрасен и удивителен, любуйтесь этой красотой и берегите ее.

Трудно переоценить роль зрения в жизни человека. Тысячелетний опыт человечества передается из поколения в поколение через книги, картины, скульптуры, памятники архитектуры, которые мы воспринимаем с помощью зрения.

Итак, орган зрения нам жизненно необходим, с помощью него человек получает 95% информации.

А знаете ли вы, что глаз совершает от 2 до 5 мигательных движений в минуту, а за 16 часов бодрствования мы мигаем до 4800 раз.?

Длительность мигания примерно 0,4 секунды.

2. Положение глаза

Рассмотрите рисунок в учебнике и установите, отростки каких костей участвуют в образовании глазницы. (Лобной, скуловой, верхнечелюстной.)

Какова роль глазниц?

А что помогает поворачивать глазное яблоко в разные стороны?

Опыт № 1. Опыт проводят учащиеся, сидящие за одной партой. Одному надо проследить за движением ручки на расстоянии 20 см от глаза. Второй перемещает ручку вверх–вниз, вправо–влево, описывает ей окружность.

Сколько же мышц приводит в движение глазное яблоко? (Не менее 4, всего же их – 6: четыре прямые и две косые. Благодаря сокращению этих мышц глазное яблоко может поворачиваться в глазнице.)

3. Защитные приспособления глаза

Опыт № 2. Пронаблюдайте за миганием век соседа и ответьте на вопрос: какую функцию выполняют веки? (Защита от световых раздражений, защита глаз от попадания посторонних частиц.)

Брови задерживают стекающий со лба пот.

Слезы оказывают смазывающее и дезинфицирующее действие на глазное яблоко. Слезные железы – своеобразная «фабрика слез» – открываются под верхним веком 10–12 протоками. Слезная жидкость на 99% состоит из воды и лишь 1% приходится на соль. Это прекрасный очиститель глазного яблока. Установлена и другая функция слез – с ними выводятся из организма опасные яды (токсины), которые вырабатываются в момент стресса. В 1909 г. томский ученый П.Н. Лащенков открыл в слезной жидкости особое вещество лизоцим, способное убивать многие микробы.

Статья опубликована при поддержке компании «Замки-Сервис». Компания предлагает Вам услуги мастера по ремонту дверей и замков, взлому дверей, вскрытию и замене замков, замене личинок, установке задвижек и замков в металлическую дверь, а также обивка дверей дерматином и реставрация дверей. Большой выбор замков для входных и бронированных дверей от лучших производителей. Гарантия качества и Вашей безопасности, выезд мастера в течение часа в Москве. Узнать подробнее о компании, предоставляемых услугах, цены и контакты Вы сможете на сайте, который располагается по адресу: http://www.zamki-c.ru/.

4. Строение зрительного анализатора

Мы видим только при наличии света. Последовательность прохождения лучей через прозрачную среду глаза такова:

луч света → роговица → передняя камера глаза → зрачок → задняя камера глаза → хрусталик → стекловидное тело → сетчатка.

Изображение на сетчатке получается уменьшенным и перевернутым. Однако мы видим предметы в естественном виде. Это объясняется жизненным опытом человека, а также взаимодействием сигналов, поступающих от всех органов чувств.

Зрительный анализатор имеет следующее строение:

1-е звено – рецепторы (палочки и колбочки на сетчатке глаза);
2-е звено – зрительный нерв;
3-е звено – мозговой центр (затылочная доля большого мозга).

Глаз – самонастраивающийся прибор, он позволяет видеть близкие и удаленные предметы. Еще Гельмгольц считал, что моделью глаза является фотокамера, объектив – это прозрачные преломляющие среды глаза. Глаз связан с мозгом через зрительный нерв. Зрение – это корковый процесс, и он зависит от качества информации, поступающей от глаза в центры мозга.

Информация от левой части полей зрения от обоих глаз передается в правое полушарие, а от правой части полей зрения обоих глаз – в левое.

Если изображение от правого и левого глаза попадает в соответствующие мозговые центры, то они создают единое объемное изображение. Бинокулярное зрение – зрение двумя глазами – позволяет воспринимать объемное изображение и помогает определять расстояние до предмета.

Таблица. Строение глаза

Компоненты глаза

Особенности строения

Роль

Белочная оболочка (склера)

Наружная, плотная, непрозрачная

Защищает внутренние структуры глаза, поддерживает форму

Сильная «линза» глаза

Покрывает переднюю часть глазного яблока до роговицы и внутреннюю поверхность века

Средняя оболочка, черная, пронизана сетью кровеносных сосудов

Питающая глаз, свет, проходя сквозь нее, не рассеивается

Поддерживает хрусталик и изменяет его кривизну

Радужная оболочка (радужка)

Содержит пигмент меланин

Светонепроницаема. Ограничивает количество света, попадающего в глаз на сетчатку. Определяет цвет глаз

Отверстие в радужной оболочке, окруженное радиальными и кольцевыми мышцами

Регулирует количество света, попадающего на сетчатку

Двояковыпуклая линза, прозрачное, эластичное образование

За счет изменения кривизны фокусирует изображение

Прозрачная желеобразная масса

Заполняет внутреннюю часть глаза, поддерживает сетчатку

Пространство между роговицей и радужкой, заполненное прозрачной жидкостью – водянистой влагой

Участие в иммунной системе глаза

Пространство внутри глазного яблока, ограниченное радужкой, хрусталиком и держащей его связкой, заполнено водянистой влагой

Участие в иммунной системе глаза

Сетчатая оболочка (сетчатка)

[2]

Внутренняя оболочка глаза, тонкий слой клеток зрительных рецепторов: палочки (130 млн) колбочки (7 млн)

Читайте так же:  Какие качества нравятся девушкам в парнях

Зрительные рецепторы формируют изображение; колбочки ответственны за цветопередачу

Скопление колбочек в центральной части сетчатки

Область наибольшей остроты зрения

Место выхода зрительного нерва

Месторасположение канала для передачи зрительной информации в мозг

5. Выводы

1. Свет человек воспринимает с помощью органа зрения.

2. Световые лучи преломляются в оптической системе глаза. На сетчатке формируется уменьшенное обратное изображение.

3. Зрительный анализатор включает:

– рецепторы (палочки и колбочки);
– нервные пути (зрительный нерв);
– мозговой центр (затылочная зона коры большого мозга).

IV. Закрепление. Работа с раздаточным материалом

Задание 1. Установите соответствие.

1. Хрусталик. 2. Сетчатка. 3. Рецептор. 4. Зрачок. 5. Стекловидное тело. 6. Зрительный нерв. 7. Белочная оболочка и роговица. 8. Свет. 9. Сосудистая оболочка. 10. Зрительная зона коры большого мозга. 11. Желтое пятно. 12. Слепое пятно.

A. Три части зрительного анализатора.
Б. Заполняет внутреннюю часть глаза.
B. Скопление колбочек в центре сетчатки.
Г. Меняет кривизну.
Д. Осуществляет различные зрительные раздражения.
Е. Защитные оболочки глаза.
Ж. Место выхода зрительного нерва.
З. Место формирования изображения.
И. Отверстие в радужке.
К. Черный питающий слой глазного яблока.

(Ответ: А – 3, 6, 10; Б – 5; В – 11; Г – 1; Д – 8; Е – 7; Ж –12; З – 2; И – 4; К – 9.)

Задание 2. Ответьте на вопросы.

Как вы понимаете выражение «Глаз смотрит, а мозг видит»? (В глазу происходит только возбуждение рецепторов в определенном сочетании, а воспринимаем мы изображение тогда, когда нервные импульсы достигнут зоны коры большого мозга.)

Видео удалено.
Видео (кликните для воспроизведения).

Глаза не чувствуют ни жары, ни холода. Почему? (В роговице нет рецепторов тепла и холода.)

Двое учащихся поспорили: один утверждал, что глаза сильнее утомляются при рассматривании мелких предметов, расположенных близко, а другой – удаленных предметов. Кто из них прав? (Глаза утомляются сильнее при рассматривании предметов, расположенных близко, так как при этом сильно напрягаются мышцы, обеспечивающие работу (увеличение кривизны) хрусталика. Рассматривание удаленных предметов – отдых для глаз.)

Задание 3. Подписать обозначенные цифрами элементы строения глаза.

V. Домашнее задание

Прочитать § 49 в учебнике, выполнить лабораторную работу на с. 249, приготовить сообщения из книги для чтения по анатомии, с. 200–206 (см. список литературы).

Литература

Вадченко Н.Л. Проверьте свои знания. Энциклопедия в 10 т. Т. 2. – Донецк, ИКФ «Сталкер», 1996.
Зверев И.Д. Книга для чтения по анатомии, физиологии и гигиене человека. – М.: Просвещение, 1983.
Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология. Человек. Учебник для 8 кл. – М.: Дрофа, 2000.
Хрипкова А.Г. Естествознание. – М.: Просвещение, 1997.
Сонин Н.И., Сапин М.Р. Биология человека. – М.: Дрофа, 2005.

ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР

Зрительный анализатор (зрительная сенсорная система) является важнейшим из всех анализаторов, т. к. он дает 90% информации, которая идет к мозгу от всех рецепторов.

Оптическая система глаза. По пути к светочувствительной оболочке глаза — сетчатке — лучи проходят через переднюю и заднюю поверхность роговицы, хрусталик и стекловидное тело. Для «редуцированного глаза», т. е. глаза, в котором все преломляющие среды имеют один и тот же показатель преломления. Для построения изображения на сетчатке нужно знать величину предмета и его расстояние от роговицы глаза.

Для ясного видения предмета необходимо, чтобы лучи от его точек были сфокусированы на сетчатке. При рассматривании далеко расположенных предметов, их изображение .фокусируется на сетчатке и они видны ясно. Изображение близких предметов на сетчатке расплывчато, они видны неясно. Следовательно, одновременно одинаково ясно видеть предметы, удаленные от глаза на разное расстояние, невозможно. Приспособление глаза к ясному видению разноудаленных предметов называется аккомодацией. При аккомодации происходит изменение кривизны хрусталика и его преломляющей способности.

Механизм аккомодации заключается в том, что сокращение ресничных мышц приводит к изменению выпуклости хрусталика. При сокращении глазомышечных волокон ресничного тела, тяга цинновых связок, расположенных по краям капсулы хрусталика, ослабляется, давление на хрусталик уменьшается, и он вследствие своей эластичности принимает более выпуклую форму. Следовательно, ресничные мышцы являются аккомодационными мышцами. Они иннервируются парасимпатическими волокнами глазодвигательного нерва.

Для нормального глаза дальняя точка ясного видения лежит в бесконечности, поэтому такой глаз далекие предметы рассматривает без напряжения аккомодации, т. е. без сокращения ресничных мышц. Предметы, расположенные ближе 10 см, неясно видны человеком с нормальным зрением, даже при максимальном сокращении ресничных мышц, т. е. при максимальном аккомодационном усилии.

Аномалии рефракции галаза. С возрастом хрусталик становится менее эластичным и при ослаблении цинновых связок выпуклость его увеличивается лишь незначительно или не меняется вовсе. Поэтому ближайшая точка ясного видения отодвигается от глаз. Это состояние называется старрческой дальнозоркостью или пресбиопией. Она коррегируется с помощью двояковыпуклых линз.

Роговая оболочка глаза не является строго сферической поверхностью, она имеет разный радиус кривизны в различных направлениях, поэтому возникает неодинаковое преломление лучей в разных направлениях, что называется астигматизмом. Астигматизм относится к аномалиям рефракции глаза и обусловлен несовершенством строения глаза как оптического прибора. Исправляется астигматизм специальными цилиндрическими линзами.

К аномалиям рефракции лучей относят близорукость (миопию) и дальнозоркость (гиперметр опию), которые обусловлены не недостаточностью преломляющих сред, а ненормальной длиной глазного яблока.

При близорукости продольная ось глаза слишком длинная, ее главный фокус находится перед сетчаткой, на сетчатке вместо точки возникают круги светорассеяния. При миопии дальняя точка ясного видения находится на очень близком расстоянии. Исправляется миопия вогнутыми линзами, которые уменьшают преломляющую силу хрусталика и отодвигает фокус изображения на сетчатку.

При дальнозоркости продольная ось глаза короткая и лучи, идущие от далеких предметов, фокусируются за сетчаткой, а на сетчатке появляется расплывчатое неясное изображение. При дальнозоркости ближайшая точка ясного видения отстоит дальше, чем у нормального глаза. Исправляется дальнозоркость двояковыпуклыми линзами.

Зрачковый рефлекс. Отверстие в центре радужной оболочки — зрачок -Пропускает только центральные лучи, не пропуская периферические лучи, тем самым способствует четкости изображения предмета на сетчатке. Величина зрачка изменяется за счет сокращения мускулатуры радужной оболочки. При изменении диаметра зрачка световой поток может измениться в 17 раз. Реакция зрачка на освещенность носит адаптивный характер, т. е. стабилизирует уровень освещенности сетчатки. В темноте диаметр зрачка увеличивается (расширение зрачка), а на свету его диаметр уменьшается (сужение зрачка). Эти изменения зрачка происходят рефлекторно и носят название зрачковый рефлекс.

Читайте так же:  Повысить самооценку после развода

Мышцы, окружающие зрачок, делятся на кольцевые, иннервируемые парасимпатическими волокнами, и радиальные, иннервируемые симпатическими нервами. Сокращение кольцевых мышц вызывает сужение зрачка, а сокращение радиальных — его расширение. Поэтому ацетилхолин вызывает сужение зрачка, адреналин — расширение. При возбуждении симпатической нервной системы (страх, ярость), при боли, гипоксии — зрачки расширяются. Расширение зрачков является важным симптомом ряда патологических состояний (болевой шок, глубокий наркоз и др.).

Рецепторный отдел зрительного анализатора представлен фоторецепторами сетчатки — палочками и колбочками. Каждый фоторецептор состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие зрительные процессы в фоторецепторной клетке.

У человека в сетчатке имеется 6-7 млн колбочек и 110-125 млн палочек. Центральная ямка сетчатки содержит только колбочки. По направлению к периферии сетчатки число колбочек уменьшается, а количество палочек возрастает. Периферия сетчатки содержит почти исключительно палочки. Колбочки функционируют в условиях яркой освещенности и воспринимают цвета, палочки являются рецепторами, которые воспринимают световые лучи в условиях сумеречного зрения.

Место выхода зрительного нерва из глазного яблока не содержит фоторецепторов и поэтому нечувствительно к свету. Его называют слепое пятно.

Внутри от фоторецепторных клеток расположен слой биполярных нейронов, к которому изнутри примыкает слой ганглиозных нервных клеток. Импульсы от многих фоторецепторов конвергируют к одной ганглиозной клетке. Один биполярный нейрон связан со многими палочками и несколькими колбочками, а одна ганглиозная клетка, в свою очередь, связана со многими биполярными клетками. Взаимодействие соседних нейронов сетчатки обеспечиватся горизонтальными и амакриновыми клетками, отростки которых соединяют по горизонтали биполярные и ганглиозные клетки.

Фотохимические процессы, происходящие в рецепторах, представляют собой начальное звено в цепи трансформации световой энергии в нервное возбуждение. Вслед за этим в рецепторах, а затем в нейронах сетчатки генерируются электрические потенциалы, которые отражают параметры действующего света.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что возбуждение по их аксонам, составляющих зрительный нерв, поступает в мозг. Ганглиозная клетка является первым нейроном зрительного анализатора. Волокна зрительного нерва образуют перекрест, причем сетчатка одного глаза имеет контра- и ипсилатеральную проекцию. Большая часть волокон поступает в наружные коленчатые тела. Аксоны их клеток идут в затылочную область коры, где расположена первичная проекционная зона зрительного анализатора. Часть волокон направляется в передние бугры четверохолмия и в таламус, от которого возбуждение поступает в кору.

Цветовое зрение. Восприятие цвета обусловлено функционированием двух механизмов. Первичным является фоторецепторный механизм, который позволяет оценить спектральные характеристики светового излучения. Различение по цвету осуществляется с помощью цветовоспринимающих фоторецепторов, избирательно реагирующих на участки спектра. Вторичными являются нервные механизмы, которые используют информацию о цвете от цветовоспринимающих фоторецепторов и определенным образом ее перекодируют.

Теория цветоощущения. Существует ряд теорий цветоощущения , но наибольшим признанием пользуется трехкомпонентная теория цветоощущения. Согласно этой теории, в сетчатке существуют три разных типа цветовоспринимающих фоторецепторов — колбочек. В колбочках находятся различные светочуствительные вещества, причем, одни колбочки содержат вещество, чувствительное к красному, другие — к зеленому, третьи — к фиолетовому. Всякий цвет оказывает воздействие на все три цветоощущающих элемента, но в разной степени. Эти возбуждения суммируются зрительными нейронами и, дойдя до коры, дают ощущение того или иного цвета.

Трехкомпонентная теория цветового зрения получила подтверждение электорфизиологическими исследованиями. От одиночных ганглиозных клеток сетчатки с помощью микроэлектродов отводились импульсы при освещении ее разными монохроматическими лучами. Оказалось, что электрическая активность в большинстве нейронов возникала при действии лучей любой длины волны в видимой части спектра. Такие нейроны названы доминанторами. В других ганглиозных клетках, названых модуляторами, импульсы возникали лишь при освещении лучами только определенной длины волны. В сетчатке и в зрительных центрах исследовано много нейронов, которые называются оппонентными нейронами, и отличаются тем, что действие на глаз излучений в какой-то части спектра возбуждает их, а в других частях спектра — тормозит. Полагают, что такие нейроны наиболее активно кодируют информацию о цвете.

Аномалии цветного зрения. Трехкомпонентная теория цветового зрения объясняет некоторые формы патологии цветовосприятия. Встречаются различные формы нарушения цветового восприятия. Полная цветовая слепота — ахромазия — встречается редко и характеризуется тем, что человек видит все предметы лишь в разных оттенках серого цвета (подобно черно-белым фотографиям). Чаще встречается частичная световая слепота. Различают три вида частичной цветовой слепоты:

  • * протанопия (дальтонизм),
  • * дейтеранопия,
  • * тританопия.

Протанопы не способны различать оттенки красного и зеленого цветов, а именно темно-зеленые и светло-красные. Дейтеранопы также не различают красный и зеленый цвета, но они путают светло-зеленые тона с темно-красными и фиолетовые с голубыми. Тританопы не способны различать синий и фиолетовый цвета. Это расстройство цветового восприятия встречается крайне редко.

Все виды частичной цветовой слепоты хорошо объясняются трехкомпонентной теорией цветоощущения. Каждый из этих видов расстройства является результатом отсутствия одного из трех цветовоспринимающих веществ колбочек, и цветовое зрение у этих людей осуществляется за счет сохранившихся двух фоторецепторных веществ. При полной цветовой слепоте имеет место поражение колбочкового аппарата сетчатки.

Исследование цветового зрения имеет большое значение, особенно для лиц, которым по роду профессии необходимо хорошо ориентироваться во всех цветах. Это исследование проводится с помощью полихроматических таблиц Е.Б. Рабкина.

Восприятие пространства. Острота зрения. Под остротой зрения понимают способность глаза различать две светящиеся точки раздельно при минимальном расстоянии между ними. Нормальный глаз различает две точки раздельно под углом зрения в одну минуту. Это связано с тем, что для раздельного видения двух точек необходимо, чтобы между возбужденными колбочками находилась минимум одна невозбужденная колбочка. Так как диаметр колбочки равен 3 мкм, то для раздельного видения двух точек необходимо, чтобы расстояние между изображениями этих точек на сетчатке составляло не менее 4 мкм , а такая величина изображения получается именно при угле зрения в одну минуту. Если угол зрения будет менее одной минуты, то две светящиеся точки сливаются в одну.

Измерение остроты зрения проводится с помощью специальных таблиц, которые состоят из нескольких рядов букв или незамкнутых окружностей различной величины. Против каждой строчки ставится число, означающее расстояние в метрах, с которого нормальный глаз должен различать цифры или фигуры этой строчки. Острота зрения выражается в относительных величинах, причем, нормальная острота принимается за единицу.

Поле зрения. Полем зрения называется пространство, видимое глазом при фиксации взгляда в одной точке. Если фиксировать взглядом какой-либо предмет, то изображение падает на желтое пятно, предмет в этом случае мы видим центральным зрением. Предметы, изображения которых падают на остальные места сетчатки, видятся периферическим зрением. Различают цветовое (хроматическое) и бесцветное (ахроматическое) поле зрения. Ахроматическое поле зрения больше хроматического, так как оно обусловлено деятельностью палочек, расположенных преимущественно на периферии сетчатки. Для различных цветов поле зрения неодинаково, больше всех оно для желтого цвета, а самое узкое для зеленого. Определяется поле зрения с помощью периметра.

Читайте так же:  Полюби себя и похудей

Оценка расстояния. Восприятие глубины пространства и оценка расстояния до объекта возможны как при зрении одним глазом (монокулярное зрение), так и двумя глазами (бинокулярное зрение). При бинокулярном зрении оценка расстояния гораздо точнее. Некоторое значение в оценке близких расстояний при монокулярном зрении имеет явление аккомодации. Для оценки расстояния имеет значение и то, что образ предмета на сетчатке будет тем больше, чем он ближе.

Зрение обоими глазами. При рассматривании предмета у человека не возникает ощущения двух предметов, хотя имеется два изображения на двух сетчатках. При зрении обоими глазами изображения всех предметов попадают на соответственные или идентичные участки сетчатки и в восприятии человека эти два изображения сливаются в одно. В этом легко убедиться, если надавить слегка на один глаз сбоку, то начинает двоиться в глазах, потому что нарушается соответствие сетчаток. Если смотреть на близкий предмет, конвергируя глаза, то изображение более отдаленной точки падает на неидентичные точки, которые иначе называются диспаратными и изображение поэтому будет представляться раздвоенным.

Оценка величины предмета. Величина предмета оценивается как функция двух переменных:

  • * величина изображения на сетчатке;
  • * расстояния от предмета до глаза.

Если расстояние до незнакомого предмета вследствие недостаточной его рельефности оценить трудно, то возможны ошибки в определении величины предмета.

Зрительный анализатор

У большинства людей понятие «зрение» ассоциируется с глазами. На самом деле глаза – это только часть сложного органа, именуемого в медицине зрительный анализатор. Глаза являются лишь проводником информации извне к нервным окончаниям. А сама способность видеть, различать цвета, размеры, формы, расстояние и движение обеспечивается именно зрительным анализатором – системой сложной структуры, которая включает несколько отделов, взаимосвязанных между собой.

Знание анатомии зрительного анализатора человека позволяет правильно диагностировать различные заболевания, определять их причину, выбирать правильную тактику лечения, проводить сложные хирургические операции. У каждого из отделов зрительного анализатора есть свои функции, но между собой они тесно взаимосвязаны. Если хоть какая-то из функций органа зрения нарушается, это неизменно сказывается на качестве восприятия действительности. Восстановить его можно, только зная, где скрыта проблема. Вот почему так важно знание и понимание физиологии глаза человека.

Строение и отделы

Строение зрительного анализатора сложное, но именно благодаря этому мы можем воспринимать окружающий мир настолько ярко и полно. Состоит он из таких частей:

  • Периферический отдел – здесь расположены рецепторы сетчатки глаза.
  • Проводниковая часть – это зрительный нерв.
  • Центральный отдел – центр зрительного анализатора локализован в затылочной части головы человека.

Основные функции зрительного анализатора – это восприятие, проведение и обработка зрительной информации. Анализатор глаза не работает в первую очередь без глазного яблока – это и есть его периферическая часть, на которую приходятся основные зрительные функции.

Схема строения непосредственного глазного яблока включает 10 элементов:

  • склера – это наружная оболочка глазного яблока, сравнительно плотная и непрозрачная, в ней есть сосуды и нервные окончания, она соединяется в передней части с роговицей, а в задней – с сетчаткой;
  • сосудистая оболочка – обеспечивает провод питательных веществ вместе с кровью к сетчатке глаза;
  • сетчатка – этот элемент, состоящий из клеток фото-рецепторов, обеспечивает чувствительность глазного яблока к свету. Фоторецепторы бывают двух видов – палочки и колбочки. Палочки отвечают за периферическое зрение, они отличаются высокой светочувствительностью. Благодаря клеткам-палочкам, человек способен видеть в сумерках. Функциональная особенность колбочек совершенно другая. Они позволяют глазу воспринимать различные цвета и мелкие детали. Колбочки отвечают за центральное зрение. Оба вида клеток вырабатывают родопсин – вещество, которое преобразует световую энергию в электрическую. Именно ее способен воспринимать и расшифровывать корковый отдел головного мозга;
  • роговица – это прозрачная часть в переднем отделе глазного яблока, здесь происходит преломление света. Особенность роговицы состоит в том, что в ней совсем нет кровеносных сосудов;
  • радужная оболочка – оптически это самая яркая часть глазного яблока, здесь сосредоточен пигмент, отвечающий за цвет глаз человека. Чем его больше и чем ближе он к поверхности радужки, тем темнее будет цвет глаз. Структурно радужная оболочка представляет собой мышечные волокна, которые отвечают за сокращение зрачка, который, в свою очередь, регулирует количество света, передающегося к сетчатке;
  • ресничная мышца – иногда ее называют ресничным пояском, главная характеристика этого элемента – регулировка хрусталика, благодаря чему взгляд человека может быстро сфокусироваться на одном предмете;
  • хрусталик – это прозрачная линза глаза, главная его задача – фокусировка на одном предмете. Хрусталик эластичен, это свойство усиливается окружающими его мышцами, благодаря чему человек может отчетливо видеть и вблизи, и вдали;
  • стекловидное тело – это прозрачная гелеобразная субстанция, заполняющая глазное яблоко. Именно оно формирует его округлую, устойчивую форму, а также пропускает свет от хрусталика к сетчатке;
  • зрительный нерв – это основная часть проводящего пути информации от глазного яблока в области коры головного мозга, обрабатывающие ее;
  • желтое пятно – это участок максимальной остроты зрения, он расположен напротив зрачка над местом входа зрительного нерва. Свое название пятно получило за большое содержание пигмента желтого цвета. Примечательно, что некоторые хищные птицы, отличающиеся острым зрением, имеют целых три желтых пятна на глазном яблоке.

Периферия собирает максимум зрительной информации, которая затем через проводниковый отдел зрительного анализатора передается к клеткам коры головного мозга для дальнейшей обработки.

Вспомогательные элементы глазного яблока

Глаз человека подвижен, что позволяет улавливать большое количество информации со всех направлений и быстро реагировать на раздражители. Подвижность обеспечивается мышцами, охватывающими глазное яблоко. Всего их три пары:

  • Пара, обеспечивающая движение глаза вверх и вниз.
  • Пара, отвечающая за движение влево и вправо.
  • Пара, благодаря которой глазное яблоко может вращаться относительно оптической оси.

Этого достаточно, чтобы человек мог смотреть в самых разных направлениях, не поворачивая головы, и быстро реагировать на зрительные раздражители. Движение мышц обеспечивается глазодвигательными нервами.

Также к вспомогательным элементам зрительного аппарата относятся:

  • веки и ресницы;
  • конъюнктива;
  • слезный аппарат.
Читайте так же:  Как бороться с гомофобией

Веки и ресницы выполняют защитную функцию, образуя физическую преграду для проникновения инородных тел и веществ, воздействия слишком яркого света. Веки представляют собой эластичные пластины из соединительной ткани, покрытые снаружи кожей, а изнутри – конъюнктивой. Конъюнктива – это слизистая оболочка, выстилающая сам глаз и веко изнутри. Ее функция тоже защитная, но обеспечивается она за счет выработки специального секрета, увлажняющего глазное яблоко и образующая невидимую естественную пленку.

Слезный аппарат – это слезные железы, от которых по протокам слезная жидкость выводится в конъюнктивальный мешок. Железы парные, расположены они в уголках глаз. Также во внутреннем уголке глаза находится слезное озерцо, куда стекает слеза после того, как омыла наружную часть глазного яблока. Оттуда слезная жидкость переходит в слезно-носовой проток и стекает в нижние отделы носовых проходов.

Это естественный и постоянный процесс, никак не ощущаемый человеком. Но когда слезной жидкости вырабатывается слишком много, слезно-носовой проток не в состоянии ее принять и переместить всю одновременно. Жидкость переливается через край слезного озерца – образуются слезы. Если же, наоборот, по каким-то причинам слезной жидкости вырабатывается слишком мало или же она не может продвигаться через слезные протоки по причине их закупорки, возникает сухость глаза. Человек ощущает сильный дискомфорт, боль и резь в глазах.

Как происходит восприятие и передача зрительной информации

Чтобы понять, как же работает зрительный анализатор, стоит представить себе телевизор и антенну. Антенна – это глазное яблоко. Оно реагирует на раздражитель, воспринимает его, преобразует в электрическую волну и передает к головному мозгу. Осуществляется это посредством проводникового отдела зрительного анализатора, состоящего из нервных волокон. Их можно сравнить с телевизионным кабелем. Корковый отдел – это телевизор, он обрабатывает волну и расшифровывает ее. В результате получается привычная для нашего восприятия зрительная картинка.

Подробнее стоит рассмотреть проводниковый отдел. Он состоит из перекрещенных нервных окончаний, то есть информация от правого глаза идет к левому полушарию, а от левого – к правому. Почему именно так? Все просто и логично. Дело в том, что для оптимальной расшифровки сигнала от глазного яблока к корковому отделу его путь должен быть максимально коротким. Участок в правом полушарии мозга, ответственный за расшифровку сигнала, расположен ближе к левому глазу, чем к правому. И наоборот. Вот почему сигналы передаются по перекрещенным путям.

Перекрещенные нервы далее образуют так называемый зрительный тракт. Здесь информация от разных частей глаза передается для расшифровки к разным частям головного мозга, чтобы сформировалась четкая зрительная картинка. Мозг уже может определить яркость, степень освещенности, цветовую гамму.

Что происходит дальше? Уже почти окончательно обработанный зрительный сигнал поступает в корковый отдел, осталось только извлечь из него информацию. В этом и заключаются основные функции зрительного анализатора. Здесь осуществляются:

  • восприятие сложных зрительных объектов, например, печатного текста в книге;
  • оценка размеров, формы, удаленности предметов;
  • формирование восприятия перспективы;
  • различие между плоскими и объемными предметами;
  • объединение всей полученной информации в целостную картинку.

Итак, благодаря слаженной работе всех отделов и элементов зрительного анализатора, человек способен не только видеть, но и понимать увиденное. Те 90% информации, которую мы получаем из окружающего мира через глаза, поступает к нам именно таким многоступенчатым путем.

Как изменяется зрительный анализатор с возрастом

Возрастные особенности зрительного анализатора неодинаковы: у новорожденного он еще не сформирован до конца, младенцы не могут фокусировать взгляд, быстро реагировать на раздражители, в полной мере обрабатывать полученную информацию, чтобы воспринимать цвет, размер, форму, удаленность предметов.

К 1 году зрение ребенка становится почти таким же острым, как у взрослого человека, что можно проверить по специальным таблицам. Но полное завершение формирования зрительного анализатора наступает только к 10–11 годам. До 60 лет в среднем, при условии соблюдения гигиены органов зрения и профилактики патологий, зрительный аппарат работает исправно. Затем начинается ослабление функций, что обусловлено естественным износом мышечных волокон, сосудов и нервных окончаний.

Что еще интересно знать

Получать трехмерное изображение мы можем, благодаря тому, что у нас есть два глаза. Выше уже говорилось о том, что правый глаз передает волну к левому полушарию, а левый наоборот, к правому. Далее обе волны соединяются, направляются к нужным отделам для расшифровки. При этом каждый глаз видит свою «картинку», и только при правильном сопоставлении они дают четкое и яркое изображение. Если же на каком-то из этапов происходит сбой, происходит нарушение бинокулярного зрения. Человек видит сразу две картинки, причем они различные.

Зрительный анализатор не напрасно сравнивают с телевизором. Изображение предметов, после того как они пройдут преломление на сетчатке, поступает к головному мозгу в перевернутом виде. И только в соответствующих отделах преобразуется в более удобную для восприятия человека форму, то есть возвращается «с головы на ноги».

Есть версия, что новорожденные дети видят именно так – в перевернутом виде. К сожалению, рассказать об этом сами они не могут, а проверить теорию с помощью специальной аппаратуры пока что невозможно. Скорее всего они воспринимают зрительные раздражители так же, как и взрослые люди, но поскольку зрительный анализатор сформирован еще не до конца, полученная информация не обрабатывается и адаптируется полностью для восприятия. Малыш просто не справится с такими объемными нагрузками.

Таким образом, строение глаза сложное, но продуманное и почти совершенное. Сначала свет попадает на периферическую часть глазного яблока, проходит через зрачок к сетчатке, преломляется в хрусталике, затем преобразуется в электрическую волну и проходит по перекрещенным нервным волокнам к коре головного мозга. Здесь происходит расшифровка и оценка полученной информации, а затем ее декодирование в понятную для нашего восприятия зрительную картинку. Это, действительно, схоже с антенной, кабелем и телевизором. Но намного филигранней, логичней и удивительней, ведь это создала сама природа, и под этим сложным процессом на самом деле подразумевается то, что мы называем зрением.

Зрительный анализатор

Лекция 12. Анализаторы. Органы чувств.

Понятие об анализаторах

Одна из важнейших функций нервной системы — получение и анализ информации об изменениях условий внешней и внутренней среды. Эту функцию нервная система осуществляет с помощью анализаторов. Нервная система получает информацию, обрабатывает ее и на этой основе выполняется ответная программа деятельности организма. Понятие об анализаторах ввел И.П.Павлов.

Анализаторы состоят из трех частей, анатомически и функционально связанных: рецепторной, периферической части анализатора; проводниковой части — нервных путей, по которым информация передается в центральную часть анализатора; нервных центров в коре головного мозга, в котором информация анализируется.

Читайте так же:  Как стать счастливой женщиной психология

Рецепторная часть представлена нервными клетками, воспринимающими раздражения. В зависимости от природы раздражителя различают фоторецепторы, механорецепторы, хеморецепторы, терморецепторы, болевые (ноцицепторы).

То, что обычно называют органом чувств, является периферической частью анализатора. У человека связь с внешней средой осуществляется с помощью шести органов чувств: зрения, слуха, вкуса, обоняния, осязания и равновесия.

Зрительный анализатор.

Рис. 235. Схема строения глазного яблока: 1 — роговица; 2 — склера; 3 — сосудистая оболочка; 4 — сетчатка; 5 — передняя камера глаза; 6 — радужка; 7 — задняя камера глаза; 8 — ресничная мышца; 9 — цинновы связки; 10 — хрусталик; 11 — стекловидное тело; 12 — слепое пятно; 13 — зрительный нерв; 14 — конъюнктива.

Орган зрения — важнейший из органов чувств, обеспечивающий человеку до 90% информации. Периферическая часть анализатора — орган зрения состоит из глазного яблока и вспомогательных органов: веки, ресницы, слезные железы, глазодвигательные мышцы (рис. 235).

Стенка глазного яблока состоит из трех оболочек. Наружная — белочная оболочка (склера) в передней части глаза прозрачная, этот ее участок называется роговицей. Под белочной оболочкой находится сосудистая оболочка, питающая глаз. В передней части сосудистая оболочка переходит в радужку, имеющую в центре отверстие — зрачок. Кольцевые и радиальные мышцы радужки рефлекторно меняют диаметр зрачка, регулируя количество света, попадающее внутрь глаза. От пигмента радужки зависит цвет глаз. Рядом с радужкой находится ресничное тело, мышца, с помощью которой меняется кривизна хрусталика, осуществляется аккомодация, приспособление к ясному видению предметов, находящихся на различном расстоянии от глаза.

Между роговицей и радужкой находится полость, заполненная влагой — передняя камера глаза. Полость между радужкой и хрусталиком называется задней камерой глаза.

Третья оболочка глазного яблока — сетчатка (рис. 236). В ней расположены светочувствительные клетки — зрительные рецепторы, около 130 млн. палочек, обеспечивающих черно-белое видение и около 7 млн. колбочек, дающих информацию о цвете.

Максимальное количество колбочек находится в сетчатке на оптической оси глаза, против зрачка, этот участок называется желтым пятном. В том месте, где от глазного яблока отходи зрительный нерв, в сетчатке нет рецепторов — слепое пятно. Максимальное количество палочек находится на периферии глаза. Палочки содержат зрительный пигмент родопсин, для его разложение достаточно небольшого количества света. В колбочках под действие света происходит разложение йодопсина, но для возбуждения колбочек нужно большее количество света.

Сетчатка состоит из нескольких слоев клеток: наружный, прилегающий к сосудистой оболочке — слой

Рис. 236. Структура сетчатки: 1 — пигментные клетки; 2 — колбочки; 3 — палочки; 4 — биполярные клетки; 5 — ганглиозные клетки; 6 — амакриновые клетки.

пигментных клеток черного цвета. Этот слой поглощает свет, препятствуя его рассеиванию и отражению. Затем идет слой, содержащий палочки и колбочки, перед ним еще три слоя клеток.

Стекловидное тело заполняет всю полость глаза, образовано прозрачным студенистым веществом. Между стекловидным телом и задней камерой глаза располагается хрусталик, упругое прозрачное образование в виде двояковыпуклой линзы. Хрусталик преломляет лучи света и собирает их в фокусе на сетчатке. С помощью цинновых связок он прикреплен к ресничной (цилиарной) мышце. Свет проходит роговицу, жидкость передней камеры глаза, через зрачок попадает в заднюю камеру, проходит через хрусталик, стекловидное тело и попадает на сетчатку. Световые лучи претерпевают наибольшее преломление в роговице и хрусталике, изображение на сетчатке уменьшенное и перевернутое.

Аккомодация осуществляется за счет сокращения ресничной мышцы, при этом расслабляются цинновы связки и хрусталик, в силу природной упругости, становится более выпуклым. Ресничная мышца отдыхает, когда человек смотрит вдаль, при этом цинновы связки натянуты и хрусталик уплощается (рис. 237).

С возрастом часто хрусталик теряет эластичность и становится более плоским, изображение от близкорасположенных предметов уходит за сетчатку — развивается старческая дальнозоркость.

При врожденной близорукости глазное яблоко удлиненное, фокусное расстояние ближе сетчатки и изображение от удаленных предметов не резкое, при врожденной дальнозоркости

Рис. 238. Схема зрительных путей человека: 1 — зрительный нерв; 2 — зрительный перекрест; 3 — коленчатые тела; 4 — зрительная кора.

глазное яблоко укороченное и фокусное расстояние уходит за сетчатку (рис. 239).

Рис. 239. Рефракция в нормальном (1), близоруком (2) и дальнозорком глазу и оптическая коррекция близорукости (4) и дальнозоркости (5).
Рис. 237. Изменение кривизны хрусталика: сверху ресничная мышца расслаблена, внизу — сокращена.

Нервные импульсы поступают по волокнам зрительного нерва в задние части затылочных долей, причем аксоны от левых половин сетчатки обоих глаз направляются в левое полушарие, от правых — в правое. При этом аксоны от медиальных половин пересекаются, образуя зрительный перекрест (рис. 238).

[3]

При изменении интенсивности освещенности происходит рефлекторное изменение диаметра зрачка. Мышцы-сфинктеры, суживатели иннервируются парасимпатическими нервами, радиальные мышцы, расширители зрачка, иннервируются симпатическими нервами, поэтому страх и боль приводят к расширению зрачков, не даром говорят: «У страха глаза велики».

Колбочки в сетчатке делятся на три группы, одни возбуждаются красным светом, вторые — зеленым, третьи — синим. Если не работает какая-то группа колбочек, развиваются заболевания, при которых не человек различает какие-то цвета.

Видео удалено.
Видео (кликните для воспроизведения).

При недостатке витамина А не образуется пигмент родопсин в палочках, при этом человек плохо видит в темноте — заболевание называется «куриная слепота». Загрязнение слизистой оболочки век (конъюнктивы), приводит к воспалительным процессам — конъюнктивиту. Чтение в движущемся транспорте, чтение лежа, длительная работа с компьютером приводят к переутомлению ресничной мышцы и снижению остроты зрения. При работе с мелкими объектами должно быть не менее 30-35 см, рабочее место должно быть хорошо освещено.

Не нашли то, что искали? Воспользуйтесь поиском:

[1]

Источники


  1. Ледлофф, Ж. Как вырастить ребенка счастливым. Принцип преемственности / Ж. Ледлофф. — М.: Генезис, 2014. — 208 c.

  2. Крэйг, Стивен 6 мужей для каждой жены. Меняйтесь вместе, если хотите остаться вместе! / Стивен Крэйг. — М.: София, 2017. — 352 c.

  3. Мартинова, Маргарита Почему мы развелись / Маргарита Мартинова. — Москва: Машиностроение, 2013. — 144 c.
    Зрительный анализатор человека
    Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here